
TaPAS : The Talence Presburger Arithmetic Suite

Jérôme Leroux and Gérald Point

LaBRI, Université Bordeaux 1, CNRS.
{leroux,point}@labri.fr

Abstract. TAPAS is a suite of libraries dedicated to FO (R, Z, +,≤). The suite
provides (1) the application programming interface GENEPI for this logic with
encapsulations of many classical solvers, (2) the BDD-like library SATAF used
for encoding Presburger formulae to automata, and (3) the very first implementa-
tion of an algorithm decoding automata to Presburger formulae.

1 The Mixed Additive Theory

The automatic verification of reactive systems is a major field of research. These sys-
tems are usually modeled with variables taking values in some infinite domains. Popular
approaches for analyzing these models are based on decision procedures adapted to the
variables domains. For numerical variables the mixed additive theory FO (R, Z, +,≤)
provides a natural logic to express linear constraints between integral variables and real
variables. This logic has positive aspects: it is decidable and actually many solvers im-
plement decision procedures for the full logic or some sub-logics like the Presburger
arithmetic. TAPAS is a suite of libraries dedicated to these logics.

The sequel is organized as follows. In Section 2 the architecture of TAPAS is pre-
sented. Section 3 presents the BDD-like library SATAF used for encoding Presburger
formulae to automata and for decoding automata to Presburger formulae. Finally, Sec-
tion 4 provides some benchmarks.

2 TAPAS at a Glance

The following figure shows the architecture of TAPAS (enclosed by the dotted line).
The FAST model-checker is also depicted but it does not actually belong to the suite; it
is just a client application.

ALAMBIC
Armoise compiler

FAST
model-checker

G
E

N
E

P
I

Pl
ug

in
s LASH

LIRA

MONA

OMEGA

PPL
SATAF

GENEPI

Plugin
A

PI C
lie

nt
A

PI

im
plem

ents ARMOISE

formula

FAST

model

Selecting the most efficient solver for a given application can be difficult. This
choice can change dramatically the practical performance of the application. Since
solvers have incompatible application programming interfaces (API), a particular one
must be first selected prior the implementation of the application; change afterward re-
quire additional development effort. The GENEPI library[BLP06] addresses this issue
by offering small APIs between, on one side, applications requiring solvers and, on the
other side, solvers implementing decision procedures. The connection between applica-
tions and solvers is realized transparently using dynamically loaded modules (plugins)
specified at the execution time. This way the choice of a solver can be postponed after
the implementation of an application based on GENEPI; the best one can be selected by
performing benchmarks. Since [BLP06], GENEPI has been enhanced with new features:
support for R, new plugins (LIRA and PPL), . . .

In general, specifying sets with low level logics is difficult and fastidious. The same
problem appears with FO (R, Z, +,≤). The ARMOISE language allows to describe con-
cisely sets of vectors (in Z and/or R). The succinctness of formulae is achieved using,
among other tricks, hierarchical definitions and arithmetic over sets (which hides nu-
merous and ugly quantifications). Below is an example of an ARMOISE formula which
specifies a repeated pattern in N2. Note that ARMOISE formulae may define sets which
are not necessarily definable in FO (R, Z, +,≤).

let
origin := (7,3);
directions := { (4,0), (0,4), (4,4) };
pattern := ([0...2], [0...2]) \ (1,1);

in
origin + nat * directions + pattern;

TAPAS provides tools to support the ARMOISE language. The ALAMBIC library per-
mits to compile ARMOISE formulae into calls to GENEPI functions. An important step
in this compilation process is the translation of high-level constructions into the mixed
additive theory; due to the expressive power of ARMOISE this transformation is not
always possible.

3 SATAF: Shared-Automata And The Synthesis of Formulae

Many solvers like LASH, LIRA and MONA are based on automata packages. Intuitively,
mappings from words to numerical vectors are used to associate to automata potentially
infinite sets of numerical vectors (one vector per accepted word). Usually, the minimal
deterministic automata are proved canonically associated to the represented sets and
not on the way they have been computed. In particular these solvers are well adapted
to sets obtained after long chains of operations like in symbolic model checking. In
[Cou04], Couvreur introduced a new data-structure called shared-automata. Intuitively,
the sharing of a finite set of automata is performed by merging every states equivalent
with respect to the Nérode relation. TAPAS contains the SATAF library that implements
this data structure. In SATAF, deciding if two automata recognize the same language
reduces to check the equality of their pointers. Similarly to BDD packages, SATAF uses
a pointer-based hash-table cache algorithm. Up to our knowledge, no other automata
package implements these features. Since the first version of SATAF written in JAVA

by Couvreur [Cou04], a new version written in C is now maintained in TAPAS. TAPAS
also provides an implementation of the GENEPI API based on SATAF.

Extracting geometrical properties (for instance linear constraints) from automata is
a challenging problem. From a theoretical point of view, this problem has been solved
in [Ler05]. This article provides a polynomial time algorithm for computing Presburger
formulae from automata representing Presburger sets. The algorithm first extracts the
“necessary” linear constraints from the automaton. Then, it computes an unquantified
Presburger formula using only these constraints, Boolean operations, translations by
integer vectors, and scaling by integer values. An implementation of this algorithm is
provided with SATAF. The generated formulae follows the ARMOISE syntax. Note that
SATAF, GENEPI and ALAMBIC provide together the very first implementation of an
algorithm that normalizes Presburger formulae into unique canonical forms that only
depend on the denoted sets. Intuitively in the normalization process, the minimization
procedure for automata acts like a simplification procedure for the Presburger arith-
metic.

4 Experimenting The Automata to Formulae Algorithm

FAST [BLP06] is a tool for verifying reachability properties of infinite-state systems.
The tool is implemented over TAPAS. Benchmarks of FAST on various GENEPI im-
plementations are available in [BLP06,BDEK07]. We experimented the computation
of ARMOISE specifications from SATAF automata denoting the reachability sets of 40
systems. Some results are presented in the following table. Column “→ A” is the time
in seconds spent for computing an automatonA representing the reachability set, “|A|”
is the number of states of A, “A → S” is the time in seconds to produce an ARMOISE
specification S from A, |S| is the number of characters of S, “n” is the number of
variables of S, and “l” is the number of linear constraints generated in S.

system → A |A| A → S |S| n l
Central Server system 9.57 75 0.07 3716 12 10
Consistency Protocol 194.96 90 0.06 3811 11 11
CSM - N 24.38 66 0.05 3330 14 11
Dekker ME 17.73 200 0.01 13811 22 0
Multipoll 11.38 612 2.54 60995 18 19
SWIMMING POOL 71.03 553 0.14 1803 9 18
Time-Triggered Protocol 116.89 17971 90.53 984047 11 44

We also experimented the normalization of ARMOISE formulae on various exam-
ples. Due to space limitation, only four representative examples are presented: modulo,
large-coef, large-var and unsimplified. Example modulo denotes the
Cartesian product (11N)×(7N)×(5N)×(3N) where mN is the set of non-negative in-
tegers multiple of m, large-coef is the conjunction of three linear constraints with
coefficients larger than 20, large-var is a linear constraint defined over 36 variables,
and unsimplified is a disjunction of two sets of linear constraints with redundant
constraints. Benchmark results are summarized in the following table. Columns have
the following meaning: “example” provides the name of the ARMOISE specification
S0, “|S0|” is the number of characters of S0, “S0 → A” is the time in seconds to pro-
duce a SATAF automatonA from S0. The other columns have been defined previously.

example |S0| S0 → A |A| A → S |S| n l
modulo 40 0.1 4620 35.8 335 4 0
large-coef 167 1.7 147378 25.1 957 4 3
large-var 543 0.2 4320 12.7 2220 36 1
unsimplified 529 1.1 16530 1.3 1026 5 2

We observe that the computation of SATAF automata A from ARMOISE specifications
S0 takes less than 2 seconds. Moreover, the computation of ARMOISE specifications S
from A takes less than half a minute even on automata with more than 105 states. In
practice the implementation (quadratically) slows down in presence of modular cons-
traints. Note that |S0| < |S| in all our examples due to non-optimized outputs. How-
ever, even if |S0| < |S| in the last example unsimplified, the redundant linear
constraints of S0 no longer appear in S.

Contrary to previous results, we observe that |S| is quite smaller than |A|. Recall
that the generated ARMOISE specifications are combinations of linear constraints. In
both series of benchmarks formulae contain a few number of constraints (see the “l”
column). The complexity of the combinations explains the differences in the results. In
practice, we observe that small automata can encode complex combinations but only a
small number of linear constraints.

5 Conclusion And Future Work

TAPAS is distributed at http://altarica.labri.fr/wiki/tools:tapas:
under GPLv2. Thanks to GENEPI, this is the first tool to our knowledge which offers
(1) a simple framework for the development of applications requiring solvers for the
mixed additive theory and (2) an easy way to benchmark solvers. TAPAS also pro-
vides the SATAF solver based on shared-automata and the first implementation of the
algorithm translating them into equivalent ARMOISE formulae.

Future Work. Predicate abstraction methods are limited by the number of conside-
red predicates. Usually some of these predicates are redundant. More precisely, some
predicates are not semantically used even if they syntactically appear. In future work,
we are interested in using the normalization procedure of TAPAS in order to remove
redundant predicates. In fact, the set of extracted linear constraints from an automaton is
known minimal : these constraints syntactically appears in any unquantified Presburger
formula that denotes the set represented by the automaton.

References

[BDEK07] Bernd Becker, Christian Dax, Jochen Eisinger, and Felix Klaedtke. Lira: Handling
constraints of linear arithmetics over the integers and the reals. In CAV, volume 4590
of LNCS, pages 307–310. Springer, 2007.

[BLP06] Sébastien Bardin, Jérôme Leroux, and Gérald Point. Fast extended release. In CAV,
volume 4144 of LNCS, pages 63–66. Springer, 2006.

[Cou04] Jean-Michel Couvreur. A bdd-like implementation of an automata package. In CIAA,
volume 3317 of LNCS, pages 310–311. Springer, 2004.

[Ler05] Jérôme Leroux. A polynomial time presburger criterion and synthesis for number
decision diagrams. In LICS, pages 147–156. IEEE Comp. Soc., 2005.

